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Abstract. The dynamics of prices in financial markets has been studied intensively both experimentally
(data analysis) and theoretically (models). Nevertheless, a complete stochastic characterization of volatility
is still lacking. What is well known is that absolute returns have memory on a long time range, this
phenomenon is known as clustering of volatility. In this paper we show that volatility correlations are
power-laws with a non-unique scaling exponent. This kind of multiscale phenomenology has some analogies
with fully developed turbulence and disordered systems and it is now pointed out for financial series.
Starting from historical returns series, we have also derived the volatility distribution, and the results are
in agreement with a log-normal shape. In our study, we consider the New York Stock Exchange (NYSE),
daily composite index closes (January 1966 to June 1998) and the US Dollar/Deutsche Mark (USD-DM)
noon buying rates certified by the Federal Reserve Bank of New York (October 1989 to September 1998).

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 89.90.+n Other topics of general
interest to physicists

1 Introduction

One of the most challenging problems in finance is the
stochastic characterization of market returns. This topic
not only has an academic relevance but also an obvious
technical interest. Think, for example, of the option pric-
ing models where distribution and correlations of volatility
play a central role.

It is now well established that returns of the most
important indices and foreign exchange markets have a
distribution with fat tails. This means that the distribu-
tion of returns decays slower than a Gaussian, which im-
plies that price processes are not simple random-walks.
Moreover, returns distributions are uncorrelated for lags
larger than a single day, in agreement with the hypothesis
of efficient market. However, the distribution of volatil-
ity and its correlations are still poorly understood. What
is known is that absolute returns (which are a mea-
sure of volatility) have memory on a long time range.
This phenomenon is known in financial literature as clus-
tering of volatility. Recent studies provide strong evi-
dence for power-law correlations for absolute returns [1–6].
Notice that in the ARCH-GARCH approach, [7–9],
volatility memory is longer than a single time step but
decays exponentially implying that ARCH-GARCH mod-
eling is inappropriate. Indeed, GARCH models have been
extended in order to take into account this long memory
property [2,10–12].
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In this paper we analyze the daily returns of the
New York Stock Exchange (NYSE) composite index from
January 1966 to June 1998, and the US Dollar/Deutsche
Mark (USD-DM) noon buying rates certified by the
Federal Reserve Bank of New York from October 1989
to September 1998. We not only find that volatility cor-
relations are power-laws on long time scales up to a year
for NYSE index and six months for USD-DM exchange
rate, but, more importantly, that they exhibit a non-
unique exponent (multiscaling). This kind of multiscale
phenomenology has some analogies with fully developed
turbulence and disordered systems [13]. Indeed, we do not
show the coexistence of many time-scales as in turbulence
[14–16] but find that correlation memory has different
lengths for different volatility sizes. This is consistent with
a multifractal behaviour for stock markets [17].

The non-unique exponents for power-law correlations
have been recently pointed out for financial series [18,
19]. Our result is based on the fluctuation analysis of a
new class of variable that we call generalized cumulative
absolute returns.

The second main result of the paper is the study
of volatility probability distribution, which is derived by
means of Fourier transform analysis. It is shown that it is
well approximated by a log-normal distribution for NYSE
index, while a log-normal shape is a reasonable fit only
around the maximum for USD-DM rate.

The paper is organized as follows: in Section 2 we
show that volatility has a long memory by consider-
ing the autocorrelation of absolute returns. Nevertheless,



196 The European Physical Journal B

the power-law behaviour cannot be inferred by simply con-
sidering autocorrelations. In order to produce sharper ev-
idence for the nature of the long memory phenomenon, in
Section 3 we perform a scaling analysis on the standard
deviation of a new class of observables, the generalized cu-
mulative absolute returns. This analysis implies power-law
correlations with a non-unique exponent. In Section 4 the
attention is focused on volatility probability distribution,
computed from returns data by means of Fourier trans-
form analysis, which turns out to be log-normal at least
for NYSE index. In Section 5 some final remarks can be
found.

2 Correlations for returns

We consider the New York Stock Exchange (NYSE) daily
composite index closes (January 1966 to June 1998) and
the US Dollar/Deutsche Mark (USD-DM) noon buying
rates certified by the Federal Reserve Bank of New York
(October 1989 to September 1998). In the first case the
dataset contains 8180 quotes, in the second 2264. The
quantity we consider is the de-averaged daily return,
defined as

rt = log
St+1

St
−
〈

log
St+1

St

〉
(1)

where St is the index quote or the exchange quote at time
t. The time t ranges from 1 to N where N is the total
number of quotes (8180 for the NYSE index and 2264 for
the USD-DM exchange rate). The notation 〈·〉 indicates
the average over the whole sequence of N data.

As pointed out by several authors [20–23], the dis-
tribution of returns is leptokurtic. In [21], it was firstly
proposed to be a symmetric Lévy stable distribution and
more recently in [22] it is argued that the distribution is
Lévy stable except for tails, which are approximately ex-
ponential. The estimation is that the shape of a Gaussian
is recovered only on longer scales, typically for monthly
returns [16,24–26].

Let us introduce the autocorrelation for returns,
defined as

C(L) = 〈rtrt+L〉 (2)

since rt is a zero mean process.
A direct numerical analysis of (2) for the NYSE index

(Fig. 1a) and for USD-DM rate (Fig. 1b) shows that the
returns autocorrelation is a vanishing quantity for all L.
This simple evidence could induce us to the wrong conclu-
sion that the description is complete, i.e. returns are i.i.d.
variables whose distribution is a truncated Lévy. The sit-
uation is much more complicated: even if the returns au-
tocorrelation vanishes, one cannot conclude that returns
are independent variables. Independence implies that all
functions of returns are uncorrelated variables. This is
known to be false, in fact volatility has a long memory. On
the other hand, the daily volatility is not directly observ-
able, and information about it can be derived by means of
absolute returns |rt|.

It is useful to consider the following autocorrelation for
powers of absolute returns

C(L, γ) = 〈|rt|γ |rt+L|γ〉 − 〈|rt|γ〉〈|rt+L|γ〉 · (3)

This quantity is plotted for γ = 1 in Figure 1a (NYSE
index) and in Figure 1b (USD-DM exchange rate). Un-
like the returns autocorrelation, it turns out to be a non-
vanishing quantity, at least up to L ' 150 (see [27,28]
and the references therein). This is clear evidence that it
is not correct to assume returns as independent random
variables.

On the other hand, Figures 1 cannot give a satisfactory
answer about the shape of absolute returns autocorrela-
tions. In fact, data show a wide spread compatible with a
different scaling hypothesis. In Figures 1 we have plotted
two power-law functions with exponents derived by scal-
ing analysis, which will be performed in the next section.
The proposed interpolations are consistent with numerical
data.

3 Scaling analysis

In the previous section, we have seen that consistent with
the efficient market hypothesis, daily returns have no
autocorrelations for lags larger than a single day. This
fact can be also checked using scaling analysis. Consider
the cumulative returns φt(L), defined as the sum of L
successive returns rt, . . . , rt+L−1 divided by L

φt(L) =
1
L

L−1∑
i=0

rt+i =
1
L

[
log

St+L
St
−
〈

log
St+L
St

〉]
·

(4)

One can defineN/L non overlapping variables of this type,
and compute the associated variance Var (φ(L)). Assum-
ing that rt are uncorrelated (or short range correlated),
it follows that Var (φ(L)) has a power-law behaviour pro-
portional to L−α with exponent α = 1 for large L (see
Appendix A), i.e.

Var (φ(L)) ∼ L−1. (5)

The exponent α both for the NYSE index and USD-DM
exchange market turns out to be around 1 (see Figs. 2 and
also see [16,23]), confirming that returns are uncorrelated.

Conversely, this is not true for other quantities related
to absolute returns. In order to perform the appropriate
scaling analysis, let us introduce the generalized cumula-
tive absolute returns defined as the sum of L successive
returns |rt|γ , . . . , |rt+L−1|γ , divided by L

φt(L, γ) =
1
L

L−1∑
i=0

|rt+i|γ (6)

where γ is a real exponent and again these quantities are
not overlapping.

In Appendix A we show that if the autocorrelation for
powers of absolute returns (3) exhibits a power-law with
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Fig. 1. Autocorrelation C(L, 1) of |rt| (crosses) as a function of the correlation length L, compared with the returns autocorre-
lation C(L) (circles), for: (a) NYSE index; (b) USD-DM exchange rate. The scale, if fixed by autocorrelation, equals 1 at L = 0.
The data for absolute returns are in agreement with a power-law with exponent, respectively, α(1) ' 0.38 for NYSE index and
α(1) ' 0.39 for USD-DM rate, which are derived by independent scaling analysis.

exponent α(γ) ≤ 1 for large L, i.e. C(L, γ) ∼ L−α(γ), it
would be implied that

Var (φ(L, γ)) ∼ L−α(γ). (7)

However, if the |rt|γ are short-range correlated or power-
law correlated with an exponent α(γ) > 1, we would not
detect anomalous scaling in the analysis of variance, i.e.
Var (φ(L, γ)) ∼ L−1.

Our numerical analysis shows very sharply an anoma-
lous power-law behaviour with exponent α < 1, after a
very short transient time, in the range up to one year

(L = 250) for NYSE index (Fig. 2a), and up to six months
(L = 150) for the USD-DM exchange market (Fig. 2b).
For larger L, the number of non overlapping variables
φ(L, γ) becomes too small for a statistical analysis, as
revealed also by the increasing fluctuations on variance
Var (φ(L, γ)) as a function of L. The best fit straight lines
are performed in the ranges, 10 ≤ L ≤ 250 for the NYSE
index, and 10 ≤ L ≤ 150 for the USD-DM rate.

The crucial result is that α(γ) is not a constant func-
tion of γ, showing the presence of different anomalous
scales. The interpretation is that different values of γ
select different typical fluctuation sizes, any of them being
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Fig. 2. Variance Var (φ(L, γ)) ∼ L−α(γ) of the generalized cumulative absolute returns as a function of L on log-log scales
for γ = 1 (crosses) and γ = 1.5 (slanting crosses), compared with the variance Var (φ(L)) ∼ L−α of the cumulative returns
(circles), for: (a) NYSE index; (b) USD-DM exchange rate. The exponents of the best fit straight lines (dashed lines) are:
α(1) = 0.377±0.005, α(1.5) = 0.526±0.009 and α = 0.98±0.01 for the NYSE index; α(1) = 0.393±0.016, α(1.5) = 0.445±0.023
and α = 0.97 ± 0.01 for the USD-DM exchange rate.

power-law correlated with a different exponent. The case
γ = 0 corresponds to a cumulative logarithm of absolute
returns. Approximately, in the region γ ≥ 4, the averages
are dominated by only a few events, corresponding to very
large returns, therefore the statistics become insufficient.

In Figure 3, α(γ) is plotted as a function of γ with error
bars for both cases. In the NYSE index case, the exponent
α(γ) exhibits a large spread, reaching an ordinary scaling
exponent α(γ) = 1 for γ ' 4. Contrarily, the USD-DM
exponent turns out to be less variable, but its anomalous
scaling persists at least up to γ = 4.

We would like to stress that the scaling analysis in
Figures 2 definitively proves the power-law behaviour and
precisely determines the coefficients α(γ), while a direct
analysis of the autocorrelations (as in Figs. 1) would not
have provided an analogous clear evidence for multiscale
power-law behaviour, since the data show a wide spread
compatible with different scaling hypotheses.

The anomalous power-law scaling can be eventually
tested against the plot of autocorrelations. For instance,
the autocorrelations of rt and of |rt| are plotted in
Figures 1 as a function of the correlation length L, and
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Fig. 3. Scaling exponent α(γ) of the variance Var (φ(L, γ)) ∼
L−α(γ) as a function of γ for NYSE index and USD-DM rate,
where the bars represent the errors over the best fits. An
anomalous scaling (α(γ) < 1) is shown for both cases.

the full line, which is in a good agreement with the data,
is not a best fit but a power-law whose exponent α(1) is
obtained by the scaling analysis of the variance.

4 Distribution of volatility

All the discussion in the previous section concerns
absolute returns. An obvious question is: “what is the
relation with volatility?”. The answer is not completely
trivial, since from an operative point of view, the volatil-
ity is often assumed to coincide with the intra-day abso-
lute cumulative return, or alternatively with the implied
volatility which can be extracted from option prices.

Our point of view is that the exact definition of volatil-
ity cannot be independent from the theoretical framework.
It is usually assumed that the volatility σt is defined by

rt = σt ωt (8)

where the ωt are identical independently distributed ran-
dom variables with vanishing average and unitary vari-
ance. The usual choice for the distribution of the ωt is the
normal Gaussian. This picture is completed by assuming
the probabilistic independence between σt and ωt.

In other terms, the returns series can be considered
as a realization of a random process based on a zero
mean Gaussian, with a standard deviation σt that changes
at each time step. According to the above definition, all
the scaling properties we have found on absolute returns
directly apply to volatility.

Volatility σt is a hidden variable, since we can directly
evaluate only daily returns. Nevertheless, in Appendix B
we show how to derive the volatility probability distribu-
tion p(σ) starting from the returns series. The key point
is to move the problem into the space of the characteristic
functions (Fourier transforms).

The probability distribution p(σ) is plotted in Figure 4,
both for the NYSE index and the USD-DM exchange rate.
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Fig. 4. Probability distribution p(σ) of volatility for NYSE
index (circles) and USD-DM exchange rate (crosses) fitted by
log-normal distributions (9) with, m = −4.94 ± 0.01 and s =
0.44 ± 0.01 for the NYSE index (fit performed in the range
0.0035 ≤ σ ≤ 0.01), and m = −5.27± 0.01 and s = 0.54± 0.01
for the USD-DM rate (fit range 0.0025 ≤ σ ≤ 0.005).

The results corresponding to extreme values of volatility
(σ ' 0 and σ ' 0.02) are not confident due to insufficient
statistics.

The astonishing fact is that the NYSE volatility
distribution is well fitted by a log-normal distribution
[28,29]

p(σ) =
1√

2π s σ
exp−1

2

(
log σ −m

s

)2

· (9)

The fit is performed in the range 0.0035 ≤ σ ≤ 0.01 and
givesm = −4.94±0.01 and s = 0.44±0.01, while the USD-
DM volatility distribution is consistent with a log-normal
distribution with m = −5.27 ± 0.01 and s = 0.54 ± 0.01
only in a narrow region around the maximum (0.0025 ≤
σ ≤ 0.005).

This unexpected log-normal shape for the volatility
distribution suggests the existence of some underlying
multiplicative process for volatility, at least for the NYSE
index. This result implies that not only are the index
prices multiplicative processes, but also the associated
returns. On the other hand, the USD-DM rate analysis
might be affected by insufficient statistics problems, lead-
ing to an over-estimation of the distribution tail in the
range σ ' 0.01. Under this hypothesis, a log-normal shape
could be consistent with the USD-DM volatility distribu-
tion, and an underlying multiplicative process might be
present also for foreign exchange returns.

Reasonable tentatives to explain this peculiar be-
haviour for the volatility distribution can be found in [15]
where a multiplicative cascade process for volatility is pro-
posed borrowing well-known arguments from turbulence
theory. In [30–32] it is shown how a random multiplica-
tive process model gives rise to power-laws and exponen-
tial tails. Power-laws also may indicate a self-organized
critical phenomenology as proposed in [33,34].
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5 Conclusions

The first result we have found is that the scaling of vari-
ance of the generalized cumulative absolute returns is a
power-law with a non-unique exponent for both the NYSE
daily index and the USD-DM exchange rate. This fact im-
plies power-law correlations whose exponent depends on
the variable being considered. The main theoretical con-
sequence is that models with exponential correlations, like
ARCH-GARCH, fail in describing the dynamics of finan-
cial markets, and that new models should account for the
coexistence of long memory with different scales.

The second result is that volatility distribution is log-
normal, at least for NYSE index. This fact suggests that
volatility itself evolves as a multiplicative process.

These two results show the existence of an underlying
process that drives daily returns and indicates that new
modelizations of financial markets have to look to returns
as a subordinate process of volatility.

Appendix A

In this appendix we show that if the correlations C(L, γ)
exhibit a long range memory, C(L, γ) ∼ L−α(γ) with
α < 1, then also the variance Var(φ(L, γ)) of the gen-
eralized cumulative absolute returns behaves at large L as
L−α(γ).

The explicit expression of variance is

Var (φ(L, γ)) =

1
L2

L∑
i=1

L∑
j=1

〈|rt+i|γ |rt+j |γ〉 − 〈|rt+i|γ〉〈|rt+j |γ〉 ·

Taking into account that rt is a stationary process, and
using the definition of C(L, γ) (3), one has:

Var (φ(L, γ))=
1
L
C(0, γ)+

2
L2

∑
L≥i>j≥1

C(i− j, γ)

where
C(0, γ) = 〈|rt|2γ〉 − 〈|rt|γ〉2.

The previous expression can be rewritten as

Var (φ(L, γ))=
1
L
C(0, γ)+

2
L2

L−1∑
i=1

(L−i) C(i, γ).

Under the hypothesis C(L, γ) ∼ L−α(γ), one has for
large L

2
L2

L−1∑
i=1

(L− i) C(i, γ) ∼ L−α(γ)

which leads to

Var (φ(L, γ)) = O(L−1) +O(L−α(γ)).

For our data α(γ) ≤ 1, and then

Var (φ(L, γ)) ∼ L−α(γ).

Contrarily, if α(γ) > 1 or greater, correlations exhibit a
faster decay, the variance Var(φ(L, γ)) would be a power-
law with a scaling exponent equal to 1.

A similar sketch can be repeated for the cumulative
returns φ(L). In this case since the correlation has a fast
decay, we have

Var (φ(L, γ)) ∼ L−1.

Appendix B

Let us introduce the variables Rt,St,Wt, defined as

Rt = log |rt|
St = log σt
Wt = log |ωt|

which are related among them by virtue of (8) by

Rt = St +Wt.

For the associated probability distributions (respectively
Q(R), P (S), T (W)) the following relation holds

Q(R) =
∫ +∞

−∞
dS P (S)T (R− S). (10)

The distribution P (S) retains full information on the
volatility probability distribution p(σ), since p(σ) =
P (log σ)/σ.

In order to derive from (10) an explicit expression
for P (S), it is convenient to consider the characteris-
tic functions (Fourier transforms) Q̃(R̃), P̃ (S̃), T̃ (W̃) of
Q(R), P (S), T (W). In fact, the following simple relation
holds

Q̃(S̃) = P̃ (S̃)T̃ (S̃)

and the inverse Fourier transform gives

P (S) =
1

2π

∫ +∞

−∞
dS̃ Q̃(S̃)

T̃ (S̃)
eiSS̃ .

Notice that Q̃(S̃) and T̃ (S̃) are complex objects, but we
may consider only the real part of the integrand, since the
result of the integration has to be real

P (S) =
1

2π

∫ +∞

−∞
dS̃ Re

[
Q̃(S̃)
T̃ (S̃)

eiSS̃

]
(11)

where

Re

[
Q̃(S̃)
T̃ (S̃)

eiSS̃

]
=

(
Re Q̃ Re T̃ + Im Q̃ Im T̃

)
cos(SS̃)

(Re T̃ )2 + (Im T̃ )2

+

(
Re Q̃ Im T̃ − Im Q̃ Re T̃

)
sin(SS̃)

(Re T̃ )2 + (Im T̃ )2
·
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From a practical point of view, Re Q̃(S̃) and Im Q̃(S̃) can
be directly computed from the returns series

Re Q̃(S̃) =
∫ +∞

−∞
dR Q(R) cos(S̃R) ' 1

N

N∑
t=1

cos(S̃Rt)

Im Q̃(S̃) =
∫ +∞

−∞
dR Q(R) sin(S̃R) ' 1

N

N∑
t=1

sin(S̃Rt).

The Fourier transforms Re T̃ (S̃) and Im T̃ (S̃) can be
evaluated numerically starting from their definitions:

Re T̃ (S̃) =
∫ +∞

−∞
dR T (R) cos(S̃R)

Im T̃ (S̃) =
∫ +∞

−∞
dR T (R) sin(S̃R)

where

T (R) =

√
2
π

eR−
1
2 e2R

.

Finally, the probability distribution P (S), and then
p(σ), can be computed via the numerical evaluation of
integral (11).

The key step of this procedure is the numerical in-
verse Fourier transform, therefore the delicate point is
the evaluation of the tails of the probability distribution
P (S), where the limited number of data leads to spurious
fluctuations.

We thank R. Baviera, R. Mantegna and A. Vulpiani for many
interesting conversations concerning data analysis and models
for dynamics of prices.
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